Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Phys Chem Lett ; 14(15): 3627-3635, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37026698

RESUMO

Proteins are dynamic molecules, relying on conformational changes to carry out function. Measurement of these conformational changes can provide insight into how function is achieved. For proteins in the solid state, this can be done by measuring the decrease in the strength of anisotropic interactions due to motion-induced fluctuations. The measurement of one-bond heteronuclear dipole-dipole coupling at magic-angle-spinning (MAS) frequencies >60 kHz is ideal for this purpose. However, rotational-echo double resonance (REDOR), an otherwise gold-standard technique for the quantitative measurement of these couplings, is difficult to implement under these conditions, especially in nondeuterated samples. We present here a combination of strategies based on REDOR variants ϵ-REDOR and DEDOR (deferred REDOR) and simultaneously measure residue-specific 15N-1H and 13Cα-1Hα dipole-dipole couplings in nondeuterated systems at the MAS frequency of 100 kHz. These strategies open up avenues to access dipolar order parameters in a variety of systems at the increasingly fast MAS frequencies that are now available.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Movimento (Física) , Anisotropia
2.
J Struct Biol X ; 7: 100082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36618437

RESUMO

The assignment of aromatic side-chain spins has always been more challenging than assigning backbone and aliphatic spins. Selective labeling combined with mutagenesis has been the approach for assigning aromatic spins. This manuscript reports a method for assigning aromatic spins in a fully protonated protein by connecting them to the backbone atoms using a low-power TOBSY sequence. The pulse sequence employs residual polarization and sequential acquisitions techniques to record HN- and HC-detected spectra in a single experiment. The unambiguous assignment of aromatic spins also enables the characterization of 1H-1H distance restraints involving aromatic spins. Broadband (RFDR) and selective (BASS-SD) recoupling sequences were used to generate HN-ΗC, HC-HN and HC-HC restraints involving the side-chain proton spins of aromatic residues. This approach has been demonstrated on a fully protonated U-[13C,15N] labeled GB1 sample at 95-100 kHz MAS.

3.
Chem Rev ; 123(3): 918-988, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36542732

RESUMO

Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana
4.
J Mol Biol ; 434(19): 167761, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907572

RESUMO

α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs, with a compact core structure, exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.


Assuntos
Príons , Agregação Patológica de Proteínas , alfa-Sinucleína , Amiloide/química , Humanos , Corpos de Inclusão/química , Espectroscopia de Ressonância Magnética , Príons/metabolismo , alfa-Sinucleína/química
5.
ACS Omega ; 7(23): 19131-19140, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721939

RESUMO

We employed a reductionist approach in designing the first heterochiral tripeptide that forms a robust heterogeneous short peptide catalyst similar to the "histidine brace" active site of lytic polysaccharide monooxygenases. The histidine brace is a conserved divalent copper ion-binding motif that comprises two histidine side chains and an amino group to create the T-shaped 3N geometry at the reaction center. The geometry parameters, including a large twist angle (73°) between the two imidazole rings of the model complex, are identical to those of native lytic polysaccharide monooxygenases (72.61°). The complex was synthesized and characterized as a structural and functional mimic of the histidine brace. UV-vis, vis-circular dichroism, Raman, and electron paramagnetic resonance spectroscopic analyses suggest a distorted square-pyramidal geometry with a 3N coordination at pH 7. Solution- and solid-state NMR results further confirm the 3N coordination in the copper center of the complex. The complex is pH-dependent and could catalyze the oxidation of benzyl alcohol in water to benzaldehyde with yields up to 82% in 3 h at pH 7 and above at 40 °C. The catalyst achieved 100% selectivity for benzaldehyde compared to conventional copper catalysis. The design of such a minimalist building block for functional soft materials with a pH switch can be a stepping stone in addressing needs for a cleaner and sustainable future catalyst.

6.
J Magn Reson ; 340: 107236, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609347

RESUMO

Band Selective Spectral Spin-Diffusion (BASS-SD) is a method to obtain selective 1H-1H contacts between chemically similar protons within a distance range of 5-6 Å in fully protonated proteins. BASS-SD combines low-amplitude proton spinlock radio frequency (rf) pulses with fast MAS frequency to enable selective polarization exchange in fully protonated molecules. The selectivity of transfer is dictated by the bandwidth of the spinlock pulse and has been used to observe selective HN-HN, Hα-Ηα and Hmethyl-Hmethyl correlations. These proton-proton spatial contacts are similar to those observed in perdeuterated samples and serve as useful structural restraints towards de novo protein structure determination. This study employs bimodal Floquet theory to derive the first- and second-order effective Hamiltonians necessary to understand the spin dynamics during BASS-SD. Analytical calculations combined with numerical simulations delineate two different mechanisms for polarization transfer amongst the proton spins. The BASS-SD recoupling condition has been reoptimized to observe selective correlations between chemically different protons (e.g., HN-Hα) while retaining the spatial contacts between chemically similar protons (e.g., HN-HN). The new BASS-SD condition is integrated with simultaneous and sequential acquisition approaches to generate four different types of structural restraints (HN-HN, Hα-Ηα, HN-Hα, Hα-HN) in one experiment. The approach has been demonstrated on microcrystalline U-[13C,15N] labeled GB1 protein at âˆ¼ 95-100 kHz MAS.


Assuntos
Proteínas , Prótons , Proteínas/química
7.
Chem Rev ; 122(10): 9643-9737, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35238547

RESUMO

In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.


Assuntos
Proteínas de Membrana , Prótons , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos
8.
Solid State Nucl Magn Reson ; 117: 101774, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051807

RESUMO

Fast magic-angle spinning (≥60 â€‹kHz) technique has enabled the acquisition of high-resolution 1H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the 1H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional 13C or 14N or 1H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel 1H experiment to separate the overlapped 1H peak and identify its spatially proximal 1H-1H correlations. This sequence combines selective excitation, selective 1H-1H polarization transfer by selective recoupling of protons (SERP), and broadband 1H recoupling by back-to-back (BABA) recoupling sequences. The concept for 1H separation is based on (i) the selective excitation of a well-resolved 1H peak and (ii) the selective dipolar polarization transfer from this isolated 1H peak to one of the 1H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of 1H-1H correlations from these two 1H peaks to other neighboring 1Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, ß-L-aspartyl-l-alanine and Pioglitazone.HCl. The sequence allows the clear observation of 1H-1H correlations from an overlapped 1H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to 14N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Espectroscopia de Ressonância Magnética/métodos
9.
J Magn Reson ; 328: 107004, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34049237

RESUMO

Proton-detected solid-state NMR at fast Magic Angle Spinning (MAS) is becoming the norm to characterize molecules. Routinely 1H-1H and 1H-X dipolar couplings are used to characterize the structure and dynamics of molecules. Selective proton recoupling techniques are emerging as a method for structural characterization via estimation of qualitative and quantitative distances. In the present study, we demonstrate through numerical simulations and experiments that the well-characterized CNvn sequences can also be tailored for selective recoupling of proton spins by employing C elements of the type (ß)Φ(4ß)Φ+π(3ß)Φ. Herein, several CNvn sequences were examined through numerical simulations and experiments. C614 recoupling sequence with a modified POST-element ((ß)Φ(4ß)Φ+π(3ß)Φ) shows selective polarization transfer efficiencies on the order of 40-50% between various proton spin pairs in fully protonated samples at rf amplitudes ranging from 0.3 to 0.8 times the MAS frequency. These selective recoupling sequences have been labeled as frequency-selective-CNvn sequences. The extent of selectivity, polarization transfer efficiency and the feasibility of experimentally measuring proton-proton distances in fully protonated samples are explored here. The development of efficient and robust selective 1H-1H recoupling experiments is required to structurally characterize molecules without artificial isotope enrichment or the need for diffracting crystals.

10.
Solid State Nucl Magn Reson ; 114: 101734, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052760

RESUMO

Solid-state NMR spectroscopy has played a significant role in elucidating the structure and dynamics of materials and biological solids at a molecular level for decades. In particular, the 1H double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment is widely used for probing the proximity of protons, rendering it a powerful tool for elucidating the hydrogen-bonding interactions and molecular packing of various complex molecular systems. Two factors, namely, the DQ filtering efficiency and t1-noise, dictate the quality of the 2D 1H DQ/SQ spectra. Experimentally different recoupling sequences show varied DQ filtering efficiencies and t1-noise. Herein, after a systematic search of symmetry-based DQ recoupling sequences, we report that the symmetry-based γ-encoded RNnν sequences show superior performance to other DQ recoupling sequences, which not only have a higher DQ recoupling efficiency but can also significantly reduce t1-noise. The origin of t1-noise is further discussed in detail via extensive numerical simulations. We envisage that such γ-encoded RNnν sequences are superior candidates for DQ recoupling in proton-based solid-state NMR spectroscopy due to its capability of efficiently exciting DQ coherences and suppressing t1-noise.


Assuntos
Prótons , Sequência de Bases , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos
11.
Chaos ; 31(2): 021105, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33653054

RESUMO

In the present effort, a data-driven modeling approach is undertaken to forecast aperiodic responses of non-autonomous systems. As a representative non-autonomous system, a harmonically forced Duffing oscillator is considered. Along with it, an experimental prototype of a Duffing oscillator is studied. Data corresponding to chaotic motions are obtained through simulations of forced oscillators with hardening and softening characteristics and experiments with a bistable oscillator. Portions of these datasets are used to train a neural machine and make response predictions and forecasts for motions on the corresponding attractors. The neural machine is constructed by using a deep recurrent neural network architecture. The experiments conducted with the different numerical and experimental chaotic time-series data confirm the effectiveness of the constructed neural network for the forecasting of non-autonomous system responses.

12.
J Chem Phys ; 153(8): 084202, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872876

RESUMO

Selective recoupling of protons (SERP) is a method to selectively and quantitatively measure magnetic dipole-dipole interaction between protons and, in turn, the proton-proton distance in solid-state samples at fast magic-angle spinning. We present a bimodal operator-based Floquet approach to describe the numerically optimized SERP recoupling sequence. The description calculates the allowed terms in the first-order effective Hamiltonian, explains the origin of selectivity during recoupling, and shows how different terms are modulated as a function of the radio frequency amplitude and the phase of the sequence. Analytical and numerical simulations have been used to evaluate the effect of higher-order terms and offsets on the polarization transfer efficiency and quantitative distance measurement. The experimentally measured 1H-1H distances on a fully protonated thymol sample are ∼10%-15% shorter than those reported from diffraction studies. A semi-quantitative model combined with extensive numerical simulations is used to rationalize the effect of the third-spin and the role of different parameters in the experimentally observed shorter distances. Measurements at high magnetic fields improve the match between experimental and diffraction distances. The measurement of 1H-1H couplings at offsets different from the SERP-offset has also been explored. Experiments were also performed on a perdeuterated ubiquitin sample to demonstrate the feasibility of simultaneously measuring multiple quantitative distances and to evaluate the accuracy of the measured distance in the absence of multispin effects. The estimation of proton-proton distances provides a boost to structural characterization of small pharmaceuticals and biomolecules, given that the positions of protons are generally not well defined in x-ray structures.

13.
J Magn Reson ; 317: 106777, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32619889

RESUMO

Dipolar recoupling sequences have been used to probe spatial proximity of nuclear spins and were traditionally designed to probe rare spins such as 13C and/or 15N nuclei. The multi-spin dipolar-coupling network of the rare spins is weak due to smaller couplings and large chemical shift dispersion. Therefore, the recoupling approaches were tailored to design offset compensated or broadband sequences. In contrast, protons have a substantially stronger dipolar-coupling network and much narrower chemical shift range. Broadband recoupling sequences such as radio-frequency driven recoupling (RFDR), back-to-back (BABA), and lab frame proton-proton spin diffusion have been routinely used to characterize the structures of protein/macromolecules and small molecules. Recently selective 1H-1H recoupling sequences have been proposed that combine chemical shift offset of the resolved proton spectrum (at fast MAS) with first- and second-order dipolar recoupling Hamiltonians to obtain quantitative and qualitative proton distances, respectively. Herein, we evaluate the performances of broadband and selective proton recoupling sequences such as finite pulse RFDR (fp-RFDR), band-selective spectral spin diffusion (BASS-SD), second-order cross-polarization (SOCP), and selective recoupling of proton (SERP) in terms of the selectivity and efficiency of 1H-1H polarization transfers in a dense network of proton spins and explore the possibility of measuring 1H-1H distances. We use theoretical considerations, numerical simulations, and experiments to support the distinct advantages and disadvantages of each recoupling sequence. Experiments were performed on L-histidine.HCl.H2O at a MAS frequency of 71.43 kHz. This study rationalizes the proper selection of 1H-1H recoupling sequences when working with fully protonated solids.

14.
J Phys Chem B ; 124(8): 1444-1451, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32017558

RESUMO

Solid-state NMR is a powerful tool to measure distances and motional order parameters which are vital tools in characterizing the structure and dynamics of molecules. Magic-angle spinning (MAS), widely employed in solid-state NMR, averages out dipole-dipole couplings that carry such information. Hence, rotor-synchronized radiofrequency (RF) pulses, that interfere with MAS averaging, are commonly employed to measure such couplings. However, most of the methods that achieve this, rotational echo double resonance (REDOR) being a classic example, require RF amplitudes that are greater than or equal to the MAS frequency. While feasible at MAS frequencies <40 kHz, these requirements become prohibitively large for higher MAS frequencies (40-110 kHz), which are now commercially available. Here, we redesign the REDOR experiment so that RF amplitudes as low as 0.5-0.7 times the spinning frequency can be used. This sequence, name deferred rotational echo double resonance (DEDOR), thus extends the utility of this method to the fastest MAS frequencies currently commercially available (111 kHz). The generality of this strategy is shown by extending it to other methods that utilize the same principle as REDOR. They will be useful in obtaining structural parameters for a wide range of molecules using solid-state NMR under fast MAS with the additional advantage of higher spectral resolution under these conditions.

15.
J Biomol NMR ; 74(4-5): 229-237, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31894471

RESUMO

Obtaining site-specific assignments for the NMR spectra of proteins in the solid state is a significant bottleneck in deciphering their biophysics. This is primarily due to the time-intensive nature of the experiments. Additionally, the low resolution in the [Formula: see text]-dimension requires multiple complementary experiments to be recorded to lift degeneracies in assignments. We present here an approach, gleaned from the techniques used in multiple-acquisition experiments, which allows the recording of forward and backward residue-linking experiments in a single experimental block. Spectra from six additional pathways are also recovered from the same experimental block, without increasing the probe duty cycle. These experiments give intra- and inter residue connectivities for the backbone [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] resonances and should alone be sufficient to assign these nuclei in proteins at MAS frequencies > 60 kHz. The validity of this approach is tested with experiments on a standard tripeptide N-formyl methionyl-leucine-phenylalanine (f-MLF) at a MAS frequency of 62.5 kHz, which is also used as a test-case for determining the sensitivity of each of the experiments. We expect this approach to have an immediate impact on the way assignments are obtained at MAS frequencies [Formula: see text].


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , N-Formilmetionina Leucil-Fenilalanina/química , Isótopos de Nitrogênio
16.
J Magn Reson ; 311: 106661, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31869741

RESUMO

Spin-diffusion (SD) is amongst the first methods proposed to spatially transfer polarization between dipolar-coupled nuclear spins. Lab-frame SD has proved particularly useful in structural characterization of a large variety of molecules. During SD, the rate of magnetization transfer between the two nuclei depends on the square of the dipolar coupling and the zero-quantum lineshape of the two spins. The relative sign of the diagonal and cross-peaks is determined by the spin part of the dipolar Hamiltonian. Practically, SD experiments are used in two ways: (a) SD transfer amongst only the protons (known as proton spin-diffusion or PSD) and b) SD amongst rare nuclei, coupled to a strong proton bath, known as proton driven spin-diffusion (PDSD). It is well established that the diagonal and cross-peaks have the same sign during SD based polarization transfer. 2D PSD experiments recorded on Histidine.HCl.H2O sample at fast magic angle spinning (MAS) show that some of the cross-peaks in the 2D spectrum are negative with respect to the diagonal peaks. Cross-relaxation due to stochastic motion is generally believed to give rise to such negative peaks. Herein, we use theoretical calculations, numerical simulations and experiments to show that the origin of the negative cross-peaks in PSD spectrum is due to coherent interactions. The origin of negative peaks can be specifically ascribed to a four spin, double-flip-double flop term, in the third-order Hamiltonian. These terms become the dominant terms at fast spinning when additional - conditions are satisfied.

17.
J Magn Reson ; 308: 106563, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31353014

RESUMO

Rotational-echo double resonance (REDOR) and Dipolar-coupling chemical-shift correlation (DIPSHIFT) are commonly used experiments to probe heteronuclear dipole-dipole couplings between isolated pairs of spin-12 nuclei in magic-angle-spinning (MAS) solid-state NMR. Their widespread use is due to their robustness to experimental imperfections and a straightforward interpretation of data. Both of these experiments use rotor-synchronised π pulses to recouple the heteronuclear dipole-dipole couplings, and the observed intensity of resonances is modulated by a recoupled phase factor depending on the position or duration of the recoupling pulses. Several modifications to both of these experiments have been proposed, for example, the development of DIPSHIFT which employs strategies that mimic the multi-rotor-period nature of REDOR. We show here that REDOR and DIPSHIFT are in fact alternate implementations of the same experiment. The overt similarity in the design of REDOR and DIPSHIFT is also reflected in their theoretical description. Dipolar dephasing curves in REDOR are obtained by increasing the recoupling duration whilst keeping the position of the pulses constant, which results in a dephasing factor that is a function of only the dephasing time. DIPSHIFT, on the other hand, is a constant-time version of REDOR; the dipolar dephasing is a function of the position of the pulses with respect to the rotor period. We discuss the advantages and disadvantages of each implementation and suggest domains of applicability for these sequences.

18.
J Chem Phys ; 150(13): 134201, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954060

RESUMO

Rotational-Echo DOuble Resonance, REDOR, is an experimentally robust and a well-established dipolar-recoupling technique to measure dipolar couplings between isolated pairs of spin-1/2 heteronuclei in solid-state nuclear magnetic resonance. REDOR can also be used to estimate motional order parameters when the bond distance is known, for example, in the case of directly bound nuclei. However, the relatively fast dipolar dephasing for strongly coupled spin-1/2 pairs, such as 13C-1H, makes the stroboscopic measurement required in this experiment challenging, even at fast Magic-Angle-Spinning (MAS) frequencies. In such cases, modified REDOR-based methods like Shifted-REDOR (S-REDOR) are used to scale the dipolar coupling compared to REDOR. This is achieved by changing the position of one of the two recoupling π-pulses in a rotor period. This feature, however, comes at the cost of mixing multiple Fourier components of the dipolar coupling and can, additionally, require high radio-frequency amplitudes to realise small scaling factors. We introduce here a general pulse scheme which involves shifting both the π pulses in the REDOR scheme to achieve arbitrary scaling factors whilst retaining the robustness and simplicity of REDOR recoupling and avoiding the disadvantages of S-REDOR. The classical REDOR is a specific case of this scheme with a scaling factor of one. We demonstrate the results on isolated 13C-15N and 1H-13C spin pairs at 20 and 62.5 kHz MAS, respectively.

19.
J Phys Chem Lett ; 9(20): 5948-5954, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30247041

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy of protons in protonated solids is challenging. Fast magic angle spinning (MAS) and homonuclear decoupling schemes, in conjunction, with high magnetic fields have improved the proton resolution. However, experiments to quantitatively measure 1H-1H distances still remain elusive due to the dense proton-proton dipolar coupling network. A novel MAS solid-state NMR pulse sequence is proposed to selectively recouple and measure interproton distances in protonated samples. The phase-modulated sequence combined with a judicious choice of transmitter frequency is used to measure quantitative 1H-1H distances on the order of 3 Å in l-histidine·HCl·H2O, despite the presence of other strongly coupled protons. This method provides a major boost to NMR crystallography approaches for structural determination of pharmaceutical molecules by directly measuring 1H-1H distances. The band-selective nature of the sequence also enables observation of selective 1H-1H correlations (e.g., HN-HN/HN-Hα/ΗΝ-ΗMethyl) in peptides and proteins, which should serve as useful restraints in structure determination.

20.
Angew Chem Int Ed Engl ; 57(19): 5262-5266, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29524323

RESUMO

α-Synuclein (α-Syn) aggregation is associated with Parkinson's disease (PD) pathogenesis. In PD, the role of oligomers versus fibrils in neuronal cell death is debatable, but recent studies suggest oligomers are a proximate neurotoxin. Herein, we show that soluble α-Syn monomers undergo a transformation from a solution to a gel state on incubation at high concentration. Detailed characterization of the gel showed the coexistence of monomers, oligomers, and short fibrils. In vitro, the gel was highly cytotoxic to human neuroblastoma cells. The individual constituents of the gel are short-lived species but toxic to the cells. They comprise a structurally heterogeneous population of α-helical and ß-sheet-rich oligomers and short fibrils with the cross-ß motif. Given the recent evidence of the gel-like state of the protein associated with neurodegenerative diseases, the gel state of α-Syn in this study represents a mechanistic and structural model for the in vivo toxicity of α-Syn in PD.


Assuntos
Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Géis , Humanos , Doença de Parkinson/tratamento farmacológico , Tamanho da Partícula , Agregados Proteicos/efeitos dos fármacos , Propriedades de Superfície , alfa-Sinucleína/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...